Vulnerability to malware - computer vulnerability    
Vulnerability to malware

Vulnerability to Malware

Malware is software designed to infiltrate or damage a computer system without the owner's informed consent. It is a portmanteau of the words "malicious" and "software". The expression is a general term used by computer professionals to mean a variety of forms of hostile, intrusive, or annoying software or program code.

Vulnerability to malware
In this context, as throughout, it should be borne in mind that the “system” under attack may be of various types, e.g. a single computer and operating system, a network or an application.

Various factors make a system more vulnerable to malware:
Homogeneity – e.g. when all computers in a network run the same OS, if you can break that OS, you can break into any computer running it.
Defects – most systems containing errors which may be exploited by malware.
Unconfirmed code – code from a floppy disk, CD or USB device may be executed without the user’s agreement.
Over-privileged users – some systems allow all users to modify their internal structures.
Over-privileged code – most popular systems allow code executed by a user all rights of that user.
An oft-cited cause of vulnerability of networks is homogeneity or software monoculture. In particular, Microsoft Windows has such a large share of the market that concentrating on it will enable a cracker to subvert a large number of systems. Introducing inhomogeneity purely for the sake of robustness would however bring high costs in terms of training and maintenance.

Most systems contain bugs which may be exploited by malware. Typical examples are buffer overruns, in which an interface designed to store data in a small area of memory allows the caller to supply too much, and then overwrites its internal structures. This may used by malware to force the system to execute its code.

Originally, PCs had to be booted from floppy disks, and until recently it was common for this to be the default boot device. This meant that a corrupt floppy disk could subvert the computer during booting, and the same applies to CDs. Although that is now less common, it is still possible to forget that one has changed the default, and rare that a BIOS makes one confirm a boot from removable media.

In some systems, non-administrator users are over-privileged by design, in the sense that they are allowed to modify internal structures of the system. In some environments, users are over-privileged because they have been inappropriately granted administrator or equivalent status. This is a primarily a configuration decision, but on Microsoft Windows systems the default configuration is to over-privilege the user. This situation exists due to decisions made by Microsoft to prioritize compatibility with older systems above security configuration in newer systems and because typical applications were developed without the under-privileged users in mind. As privilege escalation exploits have increased this priority is shifting for the release of Microsoft Windows Vista. As a result, many existing applications that require excess privilege (over-privileged code) may have compatibility problems with Vista. However, Vista's User Account Control feature attempts to remedy applications not designed for under-privileged users through virtualization, acting as a crutch to resolve the privileged access problem inherent in legacy applications.

Malware, running as over-privileged code, can use this privilege to subvert the system. Almost all currently popular operating systems, and also many scripting applications allow code too many privileges, usually in the sense that when a user executes code, the system allows that code all rights of that user. This makes users vulnerable to malware in the form of e-mail attachments, which may or may not be disguised.

Given this state of affairs, users are warned only to open attachments they trust, and to be wary of code received from untrusted sources. It also common for operating systems to be designed so that device drivers need escalated privileges, while they are supplied by more and more hardware manufacturers, some of whom may be unreliable.

Eliminating over-privileged code
Over-privileged code dates from the time when most programs were either delivered with a computer or written in-house, and repairing it would at a stroke render most anti-virus software almost redundant. It would, however, have appreciable consequences for the user interface and system management.

The system would have to maintain privilege profiles, and know which to apply for each user and program. In the case of newly installed software, an administrator would need to set up default profiles for the new code.

Eliminating vulnerability to rogue device drivers is probably harder than for arbitrary rogue executables. Two techniques, used in VMS, that can help are memory mapping only the registers of the device in question and a system interface associating the driver with interrupts from the device.

Other approaches are: Various forms of virtualization, allowing the code unlimited access only to virtual resources
Various forms of sandbox or jail
The security functions of Java, in java.security
Such approaches, however, if not fully integrated with the operating system, would reduplicate effort and not be universally applied, both of which would be detrimental to security.

Academic research on malware: a brief overview
The notion of a self-reproducing computer program can be traced back to 1949 when John von Neumann presented lectures that encompassed the theory and organization of complicated automata. Neumann showed that in theory a program could reproduce itself. This constituted a plausibility result in computability theory. Fred Cohen experimented with computer viruses and confirmed Neumann's postulate. He also investigated other properties of malware (detectability, self-obfuscating programs that used rudimentary encryption that he called "evolutionary", and so on). His doctoral dissertation was on the subject of computer viruses. Cohen's faculty advisor, Leonard Adleman (the A in RSA) presented a rigorous proof that, in the general case, algorithmically determining whether a virus is or is not present is Turing undecidable. This problem must not be mistaken for that of determining, within a broad class of programs, that a virus is not present; this problem differs in that it does not require the ability to recognize all viruses. Adleman's proof is perhaps the deepest result in malware computability theory to date and it relies on Cantor's diagonal argument as well as the halting problem. Ironically, it was later shown by Young and Yung that Adleman's work in cryptography is ideal in constructing a virus that is highly resistant to reverse-engineering by presenting the notion of a cryptovirus. A cryptovirus is a virus that contains and uses a public key. In the cryptoviral extortion attack, the virus hybrid encrypts plaintext data on the victim's machine using the virus writer's public key. In theory the victim must negotiate with the virus writer to get the plaintext back (assuming there are no backups). Analysis of the virus reveals the public key, not the needed private decryption key. This result was the first to show that computational complexity theory can be used to devise malware that is robust against reverse-engineering.

Another growing area of computer virus research is to mathematically model the infection behavior of worms using models such as Lotka-Volterra equations, which has been applied in the study of biological virus. Various virus propagation scenarios have been studied by researchers such as propagation of computer virus, fighting virus with virus like predator codes,effectiveness of patching etc.

Emerging vectors and pathways

Wikis and Blogs Innocuous wikis and blogs are not immune to hijacking. It has been reported that the German edition of Wikipedia has recently been used as an attempt to vector infection. Through a form of social engineering, users with ill intent have added links to web pages that contain malicious software with the claim that the web page would provide detections and remedies, when in fact it was a lure to infect.

Targeted SMTP Threats
Targeted SMTP threats also represent an emerging attack vector through which malware is propagated. As users adapt to widespread spam attacks, cybercriminals distribute crimeware to target one specific organization or industry, often for financial gain.



Copyright © 2008 SpamAlert.org, All rights reserved.